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INTRODUCTION

In April 1986, a medical intern scanning the peripheral
blood smear of a severely ill man with an unexplained illness
observed peculiar intracytoplasmic inclusions in several of the
patient’s monocytes. The patient described multiple tick bites
sustained approximately 2 weeks earlier during a visit to a rural
area in northern Arkansas, and a presumptive diagnosis of
Rocky Mountain spotted fever had been made (104, 174).
Clinicians and scientists subsequently identified these inclu-
sions as clusters of bacteria belonging to the genus Ehrlichia,
previously known in the United States solely as veterinary
pathogens (174). Within the next 5 years, the organism was
isolated in cell culture, characterized by molecular techniques,
and formally named Ehrlichia chaffeensis (9, 73). During this
interval, surveillance efforts identified several hundred cases of
moderate to severe, and occasionally fatal, ehrlichiosis in pa-
tients with unexplained illnesses following tick exposures (97,
106, 107, 125, 233, 263). These findings indicated that ehrli-
chiosis was a widespread and significant public health problem
of increasing but undefined magnitude.

During the 1990s, two additional Ehrlichia spp., Anaplasma
(formerly Ehrlichia) phagocytophila (the agent of human gran-
ulocytic ehrlichiosis [HGE]) and E. ewingii (a cause of granu-
locytic ehrlichiosis in dogs), were identified as human patho-
gens, and these reports greatly expanded the geographic region
and the size of the human population at risk for acquiring one
of these potentially lethal infections (19, 42). While most of the
cases of ehrlichiosis caused by E. chaffeensis were being iden-
tified in the southeastern and south central United States,
within a relatively few years of the initial recognition of HGE
the number of cases of human ehrlichiosis identified in the
northeastern and north cental states surpassed other regional
totals (188).

Although the term “emerging infection” has become almost
hackneyed, the Ehrlichia spp. that cause human disease in the
United States epitomize the intended application of this des-
ignation (156). Not only are these pathogens new to science,
but their maintenance in nature requires the complex interac-
tions of tick vectors and vertebrate hosts that are sensitive to
environmental influences that can drive epidemics (6).
Changes in host susceptibility within a population can be a
critical factor in disease emergence (193). Ehrlichiosis caused
by E. chaffeensis has increasingly been identified in population
segments immunosuppressed through aging, infectious causes,
malignancy, or medical therapy (206). Reports of severe and
fatal ehrlichioses in these population segments will increase as
an unavoidable consequence of environmental forces that in-
crease the risk of exposure to these pathogens, coupled with
dramatic changes in human demography and the geographic
distribution of AIDS cases (63, 154). This entire process has
been fueled by technical developments and the application of
sensitive and versatile diagnostic methods, particularly PCR,

and a renewed interest in tick-borne and other zoonotic dis-
eases (156, 212, 272).

Several reviews have been written on the microbiology and
molecular biology of ehrlichiae and the clinical characteristics
of the human ehrlichioses (86, 87, 93, 111, 186, 205, 227, 228).
This review of E. chaffeensis summarizes much of this material
but focuses primarily on the ecological and epidemiological
factors that have contributed to its recognition as an agent of
human disease. Although disease caused by E. chaffeensis has
been termed human monocytic ehrlichiosis or human mono-
cytotropic ehrlichiosis (i.e., HME), designations of ehrlichioses
based on cell tropism may become less useful monikers as
additional ehrlichial pathogens are recognized. However, this
nomenclature is firmly established in the literature, and to
avoid confusion in this review, the acronym HME is used to
designate disease caused by E. chaffeensis.

MICROBIOLOGY

Taxonomy and Phylogenetic Placement

E. chaffeensis is an obligately intracellular bacterium in the
family Anaplasmataceae and is a member of the � subdivision
of the Proteobacteria. Until 2001, the genus Ehrlichia was com-
posed of a heterogeneous collection of several recognized spe-
cies (e.g., E. canis, E. phagocytophila, E. sennetsu, E. equi, E.
risticii, E. chaffeensis, E. ewingii, and E. muris) and various
other taxa that do not have current standing in bacterial no-
menclature. This assemblage of species demonstrates consid-
erable molecular diversity based on phylogenetic analyses of
16S rRNA genes, surface protein genes, and groESL heat
shock protein operon sequences. On the basis of these differ-
ences, Ehrlichia spp. were until recently segregated into three
informal “genogroups” (86). A contemporary taxonomic revi-
sion reassigned several of these species to other genera (E.
sennetsu and E. risticii to Neorickettsia and E. phagocytophila
and E. equi to Anaplasma) and emended the genus Ehrlichia to
include Cowdria ruminantium, a closely related tick-borne
pathogen that causes severe disease (“heartwater”) in rumi-
nants in Africa and the Caribbean. In this classification, all
members of the tribe Ehrlichieae were reassigned to the family
Anaplasmataceae (88). The bacteria that cause human “ehrli-
chioses” are now represented by three genera rather than the
single genus Ehrlichia; they include Neorickettsia sennetsu (the
agent of sennetsu fever) Anaplasma phagocytophila, E. ewingii,
and E. chaffeensis.

The emended genus Ehrlichia includes E. canis, E. chaffeen-
sis, E. ewingii, E. muris, and E. ruminantium. These ehrlichiae
share various genetic, morphologic, clinical, and ecological fea-
tures: all are at least 97.7% similar in 16S rRNA gene se-
quences, all reside and multiply in cytoplasmic vacuoles of host
cells (the principal cell types include mononuclear and poly-
morphonuclear leukocytes and endothelial cells, depending on
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the particular species); all cause disease in animals, humans, or
both; and all are transmitted by hard-tick vectors (88).

Morphology

Light microscopic and ultrastructural descriptions of E.
chaffeensis have been based on observations of the pathogen in
human leukocytes and tissues and in various cell lines of mam-
malian origin. In these habitats, these small, nonmotile bacte-
ria reside and grow in cytoplasmic vacuoles derived from an
early endosome, forming loose to condensed aggregates of
bacteria termed morulae. By light microscopy, these morulae
appear as mulberry-like, bosselated intracytoplasmic inclusions
that stain dark blue to purple with Romanovsky-type stains
(Fig. 1) (227).

By electron microscopy, two distinct morphologic cell types
are identified: coccoid and coccobacillary forms with ribo-
somes and nucleoid DNA fibrils uniformly dispersed through-
out the cytoplasm (reticulate cells) (Fig. 2), and predominantly
coccoid bacteria with centrally condensed nucleoid DNA and
ribosomes (dense-cored cells). Reticulate cells measure 0.4 to
0.6 �m by 0.7 to 1.9 �m, and dense-cored cells measure 0.4 to
0.6 �m in diameter. Both cell types replicate by binary fission,
and both demonstrate a gram-negative-type cell wall, charac-
terized by a smooth-contoured cytoplasmic membrane and a
generally ruffled outer membrane, separated by a periplasmic
space. Members of the genus Ehrlichia do not appear to con-
tain significant amounts of peptidoglycan (227). Both cell types
have been demonstrated in clinical samples (209), although the

microbiological significance of these distinct morphological
forms is unknown. Morulae range from 1.0 to 6.0 �m in width
and contain 1 to �40 organisms of uniform or mixed cell types
(218, 228). The intramorular space may contain a fine, striated
fibrillar matrix and intramorular tubules 25 nm in diameter and
as long as 1.5 �m, which originate from the outer membrane of
reticulate cells. In cell culture and infected human cells, host
cell mitochondria are frequently apposed to the margins of
morulae (209, 218).

Isolates of E. chaffeensis

At least 21 isolates of E. chaffeensis have been obtained from
patients with HME, infected in Arkansas (73, 90), Oklahoma
(59), Florida and Georgia (209, 259), Tennessee (206, 255),
and Maryland (262). Isolates of E. chaffeensis from sources
other than human tissues are few and include five from white-
tailed deer (169) and one from a domestic goat (85), each
obtained in Georgia.

Described isolates have been obtained in primary culture by
using a continuous canine histiocytoma cell line (DH82 cells)
and less frequently, human embryonic lung fibroblasts (HEL
299 cells) (59, 73, 85, 90, 169, 206, 209, 255).

In vitro, E. chaffeensis has been adapted to grow in various
other cell lines, including human microvascular endothelial
cells (HMEC-1 cells), African green monkey kidney cells
(Vero cells), human cervical epithelioid carcinoma cells (HeLa
cells), human monocytic leukemia cells (THP-1 cells), HEL

FIG. 1. Peripheral blood smear from a patient with HME, demonstrating variably sized basophilic inclusions (morulae) within the cytoplasm
of a monocyte (lower cell). Each morula consists of a cluster of E. chaffeensis contained with a vacuole. Modified Wright’s stain. Magnification,
�1,000.
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299 cells, mouse embryo cells, buffalo green monkey cells, and
murine fibroblasts (25, 38, 58, 128, 187).

Genetic, Antigenic, and Phenotypic Characteristics

The genome size of E. chaffeensis is approximately 1250 kb
(239). Among the nucleotide sequences that have been char-
acterized are the 16S rRNA gene (9), various genes coding for
immunoreactive proteins including the variable-length PCR
target (VLPT) (259) and the 120-kDa (289), 106-kDa, and
37-kDa (290) protein genes, the groESL heat shock operon
(260), a quinolate synthetase A gene (292), and a locus that
contains 22 homologous but not identical genes (the p28 mul-
tigene family) (201, 286).

Two antigen-expressing genes that contain repetitive ele-
ments have been identified. The 120-kDa protein gene con-
tains a series of 240-bp serine-rich tandem repeat units; the
number of repeat units varies among isolates. To date, three
variants of the gene (represented by two, three, or four re-
peats) have been identified in DNA extracts of E. chaffeensis
obtained from patients with HME and from infected ticks
(255, 259, 287, 289). The 120-kDa gene encodes a heavily

glycosylated, immunodominant surface protein that is prefer-
entially expressed on dense-cored forms of E. chaffeensis and
as a component of the intramorular fibrillary matrix (183, 219).
This gene demonstrates interstrain variation, and p120 pro-
teins expressed by different isolates of E. chaffeensis vary in
molecular weight; however, immune sera from patients with
HME react with p120 antigens from various strains regardless
of variations in the number of repeat units (290). The VLPT
gene demonstrates even greater interstrain diversity (209, 259).
This gene is also characterized by a series of direct tandem
repeats, whose number may vary among isolates. DNAs of
VLPT genes amplified from cultured isolates of E. chaffeensis
or from ticks or patient blood samples infected with this patho-
gen have shown two to six repeats. Qualitative differences in
the nucleotide sequences of the imperfect 90-bp repeats results
in at least seven different types of repeat units. Additional
genetic diversity is produced by differences in the linear order
of the individual repeats and by various deletions and substi-
tutions along the length of the gene. Based on a relatively small
number of DNAs evaluated, VLPT patterns of E. chaffeensis in
the southeastern United States are most frequently repre-
sented by three or four repeats, and the six-repeat variant
appears to be the rarest version of this gene (206, 255, 257,
259). The biological function of this gene has not yet been
elucidated; however, VLPT sequences code for immunoreac-
tive proteins with apparent molecular masses of 30 to 60 kDa
(259). Collectively, the occurrence of genetic heterogeneity
among several of the recognized genes of E. chaffeensis sug-
gests that considerable molecular diversity exists within this
bacterium: evaluation of 18 patient isolates by using genetic
composites created by polymorphisms in the VLPT gene and
the 120-kDa protein gene reveal eight distinct genotypes (255,
259). No distinct biological, clinical, or epidemiological corre-
lates have been associated with a particular genotype, although
future studies may be more revealing.

Isolate-dependent sequence polymorphisms have also been
described for a locus of E. chaffeensis genes that encodes major
outer membrane proteins (OMP), described as the omp cluster
or the p28 multigene family (286). Detailed analysis of this
locus in the Arkansas isolate of E. chaffeensis reveals 22 com-
plete, paralogous genes from 813 to 900 bp distributed along a
27-kb segment of the genome (201). The p28 genes code for
mature proteins with predicted molecular sizes of approxi-
mately 26 to 32 kDa; none of the proteins are identical, and the
amino acid sequence identity varies from approximately 20 to
80% (286). Sequences of individual p28 genes also vary among
different isolates of E. chaffeensis (171, 286, 291). At least 16
p28 alleles are actively transcribed, and it is likely that the
antigenic diversity of E. chaffeensis results from differential
expression within this gene family (171). Homologous immu-
nodominant proteins encoded by multigene families have been
identified in closely related bacteria, including E. canis, E.
ruminantium, A. phagocytophila, and A. marginale (183, 201,
226).

Several major immunoreactive proteins of the Arkansas iso-
late of E. chaffeensis have been identified by using human
antisera in immunoblot analyses. These include polypeptides
with relative molecular masses of approximately 120, 66, 58, 55,
44, 29, 28, and 22- kDa (57, 59). Genetic correlates have been

FIG. 2. Electron photomicrograph of intracytoplasmic vacuoles
containing reticulate forms of E. chaffeensis (r) in a DH82 cell (con-
tinuous canine histiocytoma cell line) (267). Reticulate cells demon-
strate prominent ruffled outer cell membranes (arrowheads) and di-
vide by binary fision (arrow). Lead citrate-uranyl acetate stain.
Magnification, �18,000; bar, 1 �m. Reproduced with permission from
V. Popov, University of Texas Medical Branch at Galveston.
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established for several of these antigens, including the 120-kDa
protein, the GroEL protein (58 kDa), and the p28 proteins.

Variations in reactivity among different isolates of E.
chaffeensis have been demonstrated by using monoclonal anti-
body (MAb) analyses. MAb 1A9 reacts with epitopes of vari-
ous p28 proteins with different molecular sizes; however, it
does not react with all isolates of E. chaffeensis (59, 285),
reflecting heterogeneity in the antigenic composition among
isolates created by the diversity of p28 proteins (286, 291).
Isolate-specific reactivity is also demonstrated by MAb 6A1,
which reacts with a surface-exposed, 30-kDa antigen of the
Arkansas isolate but does not react with the 91HE17 isolate
(56). Variation in sizes of apparently homologous proteins
have also been detected by using MAbs (59) and immunoblot
analyses demonstrating isolate-specific expression of the 120-
kDa protein and VLPT repetitive-element gene products (56,
259). Biological correlates for these variably sized proteins to
pathogen virulence or clinical disease in humans are incom-
pletely characterized, although MAbs directed against specific
epitopes of p28 OMPs can mediate the clearance of E.
chaffeensis in a SCID mouse model (160).

Other than descriptions of the antigenic composition and
immunolocalization of these proteins, relatively few pheno-
typic characteristics of E. chaffeensis have been identified. Ex-
periments with a low-passage, culture-adapted isolate show
that this strain can survive for at least 11 days in anticoagulated
human whole blood and for as long as 21 days in cell culture
media at 4 to 6°C (187).

PATHOGENESIS

Factors Relating to Disease Severity

The pathogenesis and determinants of disease severity for
HME are incompletely understood. Soon after the recognition
of this disease, it became apparent that a wide range of clinical
outcomes were possible in persons infected with E. chaffeensis
(263). In a study of 149 patients diagnosed during 1985 to 1990,
logistic regression was used to demonstrate that age (�60
years) operated as an independent risk factor for severe or
fatal illness (105). However, many cases of severe or fatal
disease have been described in apparently healthy children (32,
103, 109, 246) and young adults (155, 179, 181). In this context,
disease severity may ultimately depend on a complex interac-
tion of several components relating to the host, the pathogen,
and perhaps therapeutic interventions.

Severe or fatal HME has been described in persons with
compromised immunity from various causes including human
immunodeficiency virus (HIV) disease (23, 179, 206, 208), im-
munosuppresive therapies (12, 14, 177, 180, 241, 242, 262),
monoclonal gammopathy (79), asplenia (98, 103), sickle
�-thalassemia (246), and Down’s syndrome (96).

For some patients, the severity of clinical manifestations
appears directly correlated with the level of bactermia, partic-
ularly among severely immunocompromised patients infected
with HIV. In these individuals, morulae are often detected in
peripheral blood leukocytes in relatively large numbers and the
organism is detected in cell culture relatively rapidly (206).
However, this correlate does not apply to all patients, since
peripheral blood smears and bone marrow aspirates of some

critically ill patients fail to reveal morulae (32, 91, 209, 262).
There are no data to specifically associate distinct molecular or
antigenic features among strains of E. chaffeensis with varia-
tions in disease severity or particular disease manifestations;
however, it is possible that intrinsic markers for these out-
comes will emerge as additional isolates are obtained and a
broader repertoire of genetic identifiers are evaluated (90, 209,
255).

Among published descriptions of patients with particularly
severe or fatal HME are reports of individuals who received
long-term sulfa drug therapy for ulcerative colitis (194, 211) or
as prophylaxis for opportunistic infections (14, 206, 242, 262)
and reports of patients for whom trimethoprim-sulfamethox-
azole was administered for several days or weeks before ehr-
lichiosis was correctly diagnosed (1, 27, 28, 84, 94, 103, 119,
236, 237, 243). An association between the use of sulfa-con-
taining antibiotics and exacerbation of disease severity has
been described for other rickettsial infections, and the fre-
quency of similar reports of this association among patients
with HME warrants further investigation (215).

Pathology

In vertebrate hosts, E. chaffeensis infects predominantly
mononuclear phagocytic cells. The most frequently infected
blood cells are monocytes; however, infections in other cell
types have been described, including lymphocytes, atypical
lymphocytes, promyelocytes, metamyelocytes, and band and
segmented neutrophils (1, 91, 174, 209). Although E. chaffeen-
sis appears capable of inhabiting other phagocytic cells (e.g.,
granulocytes), it is likely that mononuclear phagocytes main-
tain the productive infection (91). Infected cells typically con-
tain only 1 or 2 morulae, although as many as 15 have been
observed in leukocytes of immunosuppressed patients (23, 179,
208).

There are relatively few histopathologic data describing le-
sions in tissues and organs of persons with HME. The most
extensively sampled and described tissue has been bone mar-
row. However, no consistent histopathologic patterns have
emerged from these examinations, possibly because the biopsy
specimens have been obtained during different stages in the
course of the illnesses. The most frequently reported finding is
a normocellular or hypercellular marrow with myeloid hyper-
plasia, megakaryocytosis, or both (91, 121, 253). Bone marrow
biopsy specimens may reveal aggregates of foamy histiocytes or
small noncaseating granulomas (91, 99, 121) or may show he-
mophagocytosis (1, 84, 91, 180) or may be unremarkable or
normal (91, 99, 127, 138). Morulae have been detected in fewer
than half of the described bone marrow biopsy specimens but
are frequently visualized in marrow of patients infected with
HIV (23, 208, 209). Hypocellular bone marrow is seldom ob-
served in patients with acute disease, and diminished periph-
eral blood cell counts are characteristically far out of propor-
tion to the absolute numbers infected leukocytes, implying that
cytopenias associated with HME result from peripheral events
that may include sequestration, consumption, or destruction of
infected and noninfected cells (91, 125).

Pathologic findings in other tissues have been described
most frequently in patients with fatal disease (79, 89, 91, 180,
208, 209). Because persons who die of HME often represent
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FIG. 3. Immunohistochemical localization of E. chaffeensis in mononuclear cells of the spleen (A) and bone marrow (B), in pulmonary
macrophages (C), and in hepatic Kupffer cells (D) in patients with fatal HME; tissues represented in panels A through C were obtained from
patients coinfected with HIV. Bacterial burdens in severely immunocompromised individuals are generally far greater than those observed in
immunologically intact patients. Ehrlichiae and ehrlichial antigens appear as red inclusions within the cytoplasms of infected cells. Immunoalkaline
phosphatase stain with naphthol phosphate–fast red substrate and hematoxylin counterstain. Magnifications, �630. Reproduced with permission
from S. Zaki, CDC.
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FIG. 3—Continued.
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specialized patient cohorts (e.g., immunocompromised pa-
tients), quantitative and qualitative features of the histopatho-
logic findings in these patients may not be directly comparable
to features of disease in the general patient population. Find-
ings in the lungs of these patients may include intra-alveolar
hemorrhage, diffuse alveolar damage, and interstitial pneumo-
nitis and edema (89, 109, 180, 208, 209). Perivascular, predom-
inantly lymphohistiocytic infiltrates without evidence of endo-
thelial damage or thrombosis can occur in many organs,
including the meninges (180, 209, 275). Other findings may
include hemophagocytosis and microvesicular steatosis in the
liver (89, 208, 209), focal necroses in spleen, liver, and lymph
nodes (89, 208), and diffuse hemorrhages involving soft tissues,
kidneys, urinary bladder, diaphragm, and meninges (180, 209).

Localization of ehrlichiae and ehrlichial antigens by immu-
nohistochemical and in situ hybridization techniques reveal
systemic, multiorgan involvement in patients with fatal HME.
The greatest distribution of bacteria occurs in tissues contain-
ing abundant mononuclear phagocytic cells, including splenic
cords and periarteriolar sheaths, lymph nodes, and bone mar-
row (23, 79, 180, 208). Morulae are less frequently observed in
macrophages in the pulmonary microvasculature and in the
liver within Kupffer cells (79, 89, 208) (Fig. 3C and D). E.
chaffeensis is detected occasionally and in lower abundance in
mononuclear cell aggregates or perivascular infiltrates in the
brain, heart, pancreas, adrenals, kidneys, gastrointestinal tract,
omentum, ovaries, and connective tissue (23, 79, 180).

Immunology

As with many aspects of the pathogenesis of HME, there is
only a nascent understanding of the immune mechanisms that
follow infection with E. chaffeensis in a human host. The rela-
tive contributions of humoral and cell-mediated immunity have
not been definitively established, although both appear to play
important roles in host defenses against this pathogen. Be-
cause ehrlichiae are intracellular pathogens, it is intuitive that
cellular immunity is an important component of successful
clearance of E. chaffeensis. This paradigm is suggested directly
by descriptions of particularly severe disease in HIV-infected
patients (206) and indirectly by observations of the profound
lymphoproliferative responses described for patients recover-
ing from HME (45, 99, 105).

Various inbred mouse strains have been used to dissect the
impact of cellular and humoral processes following infection.
Wild-type mouse strains infected with E. chaffeensis clear the
bacteria within 16 days, while mice with defective macrophage
and T-cell functions maintain infections that may persist for
one to several months (112). Mice lacking functional toll-like
receptor 4 (tlr4) alleles, whose gene product is responsible for
macrophage stimulation following exposure to lipopolysaccha-
ride of gram-negative bacteria, produce significantly decreased
levels of nitric oxide and interleukin-6 (IL-6) and develop
infections with E. chaffeensis that persist for at least 2 weeks
beyond the duration of infection observed in wild-type mice.
However, macrophage activation alone does not appear to be
sufficient for successful clearance of this pathogen. The role of
major histocompatibility complex class II (MHC-II) genes ap-
pear to be even more profound, and mice lacking functional
MHC-II genes are unable to clear E. chaffeensis following

infection. These findings suggest that CD4� T lymphocytes are
essential for complete clearance of this intracellular pathogen
(112). These observations are supported by the results ob-
tained with other murine models using immunodeficient ani-
mals. In contrast to tlr4 and MHC-II mutants which do not
become ill or die following infection with E. chaffeensis, SCID
mice deficient in T and B lymphocytes develop persistent,
overwhelming infections and become moribund within 24 days
postinfection (280). However, animals with functional B cells
but deficient for �/� T cells or both �/� and �/� T cells remain
persistently infected but do not become ill. Similarly, immune
serum from immunocompetent mice or MAbs recognizing an
immunodominant outer membrane protein (p28) of E.
chaffeensis, administered passively to SCID mice prior to or
during active infection, results in protection from disease but
does not effect complete bacterial clearance (160, 281). Col-
lectively, observations in murine systems suggest that antibod-
ies contribute to the elimination of this pathogen during active
infection and may ameliorate disease and that intact cellular
immunity, particularly involving processes coordinated by
CD4� T cells, appears to be the crucial determinant of com-
plete recovery following infection with this agent.

Paradoxically, the relative paucity of bacteria detected in the
blood and tissues of most patients infected with E. chaffeensis,
even those with severe illnesses, suggests that clinical manifes-
tations of HME may also be mediated by host immune re-
sponses, and possibly amplified by specific cytokine production
(228). In vitro studies have shown that human monocytes in-
fected with E. chaffeensis produce only two proinflammatory
interleukins, IL-1� and IL-8, and an immunosuppresive cyto-
kine, IL-10 (157). However, when infected cells are exposed to
hyperimmune serum containing anti-E. chaffeensis IgG anti-
bodies, additional proinflammatory cytokines, including tumor
necrosis factor alpha and IL-6, are generated by the cells (158).
Binding of the E. chaffeensis-antibody complex to human
monocytes via the Fc� receptor is required for expression of
TNF-� and IL-6 mRNAs and enhances the expression of IL-1�
mRNA. The presence of immune complexes also activates
nuclear factor kappa-B, further stimulating secretion of these
cytokines. In concert, these processes generate levels of major
proinflammatory cytokines as high as the levels observed in
cells stimulated with Escherichia coli lipopolysaccharide. These
findings suggest that the generation of antibodies to E.
chaffeensis may trigger pathophysiologic responses detrimental
to the host through a mechanism similar to endotoxic shock
(158). In this context, cytokine production and modulation by
anti-E. chaffeensis antibodies may play critical roles in pro-
cesses involving both elimination of the pathogen and gener-
ation of systemic disease (228).

Patients with HME typically develop a lymphocytosis during
recovery that is disproportionately represented by CD3�

CD4	 CD8	 T cells expressing a T-cell receptor composed of
� and � chains. Expansion of lymphocytes with this relatively
unusual phenotype has been associated with immune re-
sponses to various intracellular pathogens, including Mycobac-
terium, Listeria, and Leishmania spp. However, patients with
HME display the most profound �/� T-cell lymphocytosis re-
ported, with levels as high as 97%. Because this response is
temporally associated with resolution of infection, it is uncer-
tain if this peculiar lymphocytosis is directly involved in host
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defense against ehrlichiae or represents an epiphenomenon of
the infection (45). Resolution of the �/� T-cell lymphoprolif-
eration involves apoptotic cell death of the lymphocytes, which
may represent an important mechanism for modulating the
T-cell immune response during recovery from the infection
(46).

Extensive genetic variability exhibited by the p28 multigene
locus of E. chaffeensis and in expressed surface antigen proteins
has been proposed as a mechanism of immune evasion (225,
226, 286). Although quantitative transcriptional analyses re-
main to be performed, it is possible that E. chaffeensis may
differentially and sequentially express the p28 multigene family
to rapidly alter the composition of one or more of its immu-
nodomminant surface proteins and thereby escape immune
surveillance. Only 12 (38%) of 32 convalescent-phase serum
samples from patients with HME demonstrated reactivity with
a recombinant p28 cloned from the Arkansas isolate (p28-19)
of E. chaffeensis, supporting the concept that differential ex-
pression of p28 genes results in proteins with substantially
different antigenic properties (291). Inoculation with recombi-
nant p28 protects mice from E. chaffeensis infection (202),
raising hopes that this antigen will have uses as vaccines for
ehrlichial pathogens. MAbs directed against epitopes within
the amino terminus of a hypervariable region of the OMP-1g
protect SCID mice from otherwise fatal E. chaffeensis infec-
tion, and humans with HME produce antibodies reactive with
the same OMP-1g hypervariable region (160).

There are few data available that evaluate long-term immu-
nity to E. chaffeensis in persons infected with this pathogen. A
single case of sequential infections with two genetically distinct
strains of E. chaffeensis has been described. The patient was a
liver transplant recipient receiving immunosuppressive ther-
apy, who developed illnesses characteristic of HME during
each episode (161). However, the susceptibility of previously
infected, immune-intact individuals to reinfection with differ-
ent strains or even the identical strain remains undetermined.
Similarly, a single case of persistent infection with E. chaffeen-
sis has been documented in a 68-year-old debilitated patient in
whom ehrlichiae were detected in intrasinusoidal histiocytes of
the liver at the time of death, 68 days following the onset of
illness (92). The prevalence or clinical significance of persistent
infection with this pathogen in human hosts is unknown.

Asymptomatic infection with E. chaffeensis has not been
conclusively demonstrated; however, isolation of an ehrlichia
closely related or identical to E. canis from the blood of an
asymptomatic human from Venezuela suggests that infections
with some Ehrlichia spp. may remain clinically silent (214).

Entry and Survival of E. chaffeensis in the Cell

Because E. chaffeensis lacks pili or a capsule, it may bind to
its host cell via its outer membrane (229). In vitro studies
showing attachment and invasion of HeLa cells by E. coli
containing a plasmid expressing the 120-kDa OMP of E.
chaffeensis suggest that the p120 is an adhesin that might also
enhance the internalization of ehrlichiae (219). Internalized
ehrlichiae are invested by the host cell membrane, forming
endosomes that maintain distinct cytoplasmic compartments
that do not fuse with lysosomes (229).

Survival of ehrlichiae within the cell may be influenced by

complex molecular and biochemical pathways involving iron
acquisition. Iron is essential for cytochromes and other iron-
containing enzymes of E. chaffeensis (229). The iron chelator
deferoxamine completely inhibits the growth of E. chaffeensis,
indicating that this bacterium is sensitive to cytoplasmic iron
depletion (25). Early endosomes containing E. chaffeensis se-
lectively and progressively accumulate transferrin and trans-
ferrin receptors (26, 195). Because these endosomes are
slightly acidic, ehrlichiae may acquire iron directly from trans-
ferrin-iron complexes present in the endosome. Infection of
cells by E. chaffeensis further modulates iron uptake by acti-
vating a cytoplasmic protein (iron-responsive protein 1), which
increases host cell transferrin receptor mRNA levels (24). In
vitro studies using recombinant gamma interferon show that
this cytokine activates the intracellular killing of E. chaffeensis
in human monocytes early in the course of infection by mark-
edly diminishing the number of host cell transferrin receptors,
thereby reducing the intracellular labile iron pool (25); how-
ever, E. chaffeensis appears to rapidly block the ehrlichiacidal
activity of gamma interferon by increasing protein kinase A
activity in host cells within 30 min following infection (159). E.
chaffeensis also expresses a 37-kDa protein homologous to iron
binding proteins of gram-negative bacteria; however, the exact
role of this protein remains to be determined (290).

Animal Models of Disease

Investigations of the pathogenesis and immunology of HME
have been hampered by the lack of a convenient, reproducible,
and generalizable animal model of disease. White-tailed deer,
which serve as important natural reservoirs of E. chaffeensis,
maintain persistent bacteremias capable of infecting lone star
ticks but do not demonstrate clinical manifestations of disease
(70, 76, 100).

E. chaffeensis causes naturally occurring disease among dogs
that is indistinguishable clinically from diseases caused by E.
canis and E. ewingii (37). Experimental infection of dogs also
suggests that these animals may have E. chaffeensis circulating
in blood for over 3 weeks (77) and may develop characteristic
antibody responses (230). However, needle-inoculated animals
appear to develop only mild febrile responses without hema-
tologic abnormalities (77). Other factors limit the utility and
versatility of canines as experimental hosts, including the ab-
sence of inbred syngeneic dogs (particularly animals with ge-
netically defined immune defects) and commercially available
canine-specific markers for immune effectors (252).

Several strains of inbred immunocompetent mice (Mus mus-
culus) have been inoculated with E. chaffeensis. These animals
appear to rapidly clear the infection and seldom develop illness
consistent with HME (165, 264, 280); however, neutrophil in-
filtrates, hepatocyte apoptosis, and granuloma formation have
been observed in the livers of some infected mice (112). Al-
though relatively restricted in their applicability as models of
pathogenesis of HME in immune-intact patients, various mu-
rine strains with defined immunological deficiencies have
proved useful for exploring cellular and antibody-mediated
host defenses to E. chaffeensis (112, 280). Small-scale studies
using other rodents including white-footed mice, hamsters, and
red-backed voles have been unsuccessful in reproducing dis-
ease (264).

VOL. 16, 2003 E. CHAFFEENSIS: PROTOTYPICAL EMERGING PATHOGEN 45



Animal models of HME using closely related Ehrlichia spp.
as surrogates for E. chaffeensis include infection of BALB/c
mice with E. muris (144, 145) and infection of C57BL/6 or
BALB/c mice with an as yet unnamed Ehrlichia sp. (Ixodes
ovatus ehrlichia [IOE]) that is �98% similar to E. chaffeensis
by 16S rRNA sequence analysis (203, 249, 252). Mice infected
with E. muris develop a transient, mild illness and almost
always recover from infection, decreasing the utility of this
model as an instrument to study severe HME. However, ani-
mals infected with appropriate inocula of IOE consistently die
within 9 days and demonstrate histopathologic lesions that
resemble lesions identified in human patients with fatal HME,
including interstitial pneumonitis, myeloid hyperplasia of bone
marrow, and hepatic apoptosis and erythrophagocytosis. In this
context, the IOE-mouse model represents a promising system
for investigating the immunity and pathogenesis of HME (203,
252).

CLINICAL FEATURES

Characteristics of Disease

The early disease manifestations of HME are relatively con-
stant and, with few exceptions, are shared by a vast array of
infectious and noninfectious processes. As the disease
progresses, involvement of multiple organ systems may com-
plicate the clinical course and result in various life-threatening
scenarios.

General clinical features. Within 1 to 2 weeks (median, 9
days) following exposure to an infecting tick, patients experi-
ence a prodrome characterized by malaise, low-back pain, or
gastrointestinal symptoms or may develop sudden onset of
fever (often �39°C). Patients with HME are most likely to
seek medical attention within 3 to 4 days after the onset of
symptoms, and the presenting clinical features frequently in-
clude fever (�95%), headache (60 to 75%), myalgias (40 to
60%), nausea (40 to 50%), arthralgias (30 to 35%), and mal-
aise (30 to 80%) (99, 105). During the course of the illness,
other manifestations of multisystem disease develop in approx-
imately 10 to 40% of patients, including cough, pharyngitis,
lymphadenopathy, diarrhea, vomiting, abdominal pain, and
changes in mental status (99, 105, 204, 254). Less frequently
reported manifestations include conjunctivitis (32, 250), dys-
uria (109, 179), and peripheral edema (98).

Large case series of HME in the general population report
rashes in approximately 30 to 40% of patients, although a rash
is reported more frequently among adult persons infected with
HIV (206) and may occur in as many as two-thirds of pediatric
patients (95, 139). In comparison, rash is a component of
approximately 90% of cases of Rocky Mountain spotted fever
(248). Rash patterns associated with HME are variable in
character, distribution, and temporal occurrence. This pleo-
morphism includes petechiae (50, 103, 177, 206, 215, 250),
macules (103, 126), maculopapules (32, 200, 241, 243), and
diffuse erythema (28, 103, 173, 206). Rash generally occurs
later in the course of disease (median of 5 days after onset)
(105), may be fleeting or transient (27, 103), and may involve
the extremities, trunk, face or, rarely, the palms and soles (96,
124).

Hematologic and biochemical abnormalities. Multilineage
cytopenias are a hallmark laboratory feature of HME early in
the course of the illness and may provide early presumptive
clues to the diagnosis (105, 246). Mild to moderate leukopenia
is observed in approximately 60 to 70% of patients during the
first week of illness, with the largest decreases occurring in the
total lymphocyte count (99, 105, 139, 255). A relative and
absolute lymphocytosis (approximately 45 to 85% of the total
leukocyte count) is seen in most patients during recovery and
is characterized predominantly by the expansion of activated T
cells expressing the �/� T-cell receptor (45, 99). Thrombocy-
topenia is the most frequently identified cytopenia, being seen
in 70 to 90% of patients during their illness (105, 206). Al-
though some patients may develop very low platelet levels
(e.g., 
20,000/�l), platelet nadirs are generally between 60,000
and 120,000/�l (105). The majority of patients present with a
normal hematocrit; however, anemia eventually develops in
approximately half of HME patients, occurring within 2 weeks
following the onset of illness (99, 105, 139, 254, 255).

Mildly or moderately elevated hepatic transaminase levels
are noted in approximately 80 to 90% of patients at some point
during their illness (99, 105, 200, 254). Alkaline phosphatase
and bilirubin levels are less likely to be elevated; however,
these markers can be elevated in 25 to 60% of patients (99,
200, 255). Mild to moderate hyponatremia has been reported
in as many as 50% of adult patients and 70% of pediatric
patients (99, 139). Serum sodium levels of 
130 mEq/liter are
frequently observed in persons with severe disease (16, 32, 177,
181, 206).

Various other biochemical abnormalities may occur, reflect-
ing progression of the illness to multisystem involvement.
These include prolonged activated partial thromboplastin and
prothrombin times, increased levels of fibrin degradation prod-
ucts, elevations in the levels of serum creatinine, lactate dehy-
drogenase, creatine phosphokinase, and amylase, and electro-
lyte abnormalities including hypocalcemia, hypomagnesemia,
and hypophosphatemia (94, 99, 138, 177, 206). The pathophys-
iologic processes responsible for electrolyte abnormalities are
not well understood. In some patients, diminished concentra-
tions of albumin and protein in serum are also noted (1, 126,
138), which may affect the measurement of some divalent cat-
ions.

Severe or unusual manifestations. HME generally manifests
as a moderate to severe disease, and approximately 60 to 70%
of patients in contemporary case series have been hospitalized
(48, 105, 254, 255). In some patients, untreated disease may
progress to death as early as the second week of illness (79,
109, 179, 209) or may cause a febrile illness lasting 2 to 3 weeks
(106). Multisystem involvement often develops in patients with
severe disease and may include acute renal failure, metabolic
acidosis, respiratory failure, profound hypotension, dissemi-
nated intravascular coagulopathy, hepatic failure, adrenal in-
sufficiency, and myocardial dysfunction (103, 138, 174, 177,
179, 194, 206, 246, 254, 261, 279). The factors responsible for
disease severity and involvement of specific organ systems are
incompletely understood.

Approximately 20% of persons infected with E. chaffeensis
develop signs and symptoms of central nervous system disease
(99, 105). Neurologic findings may suggest a meningitis syn-
drome (meningismus, photophobia, severe headache, lethargy,
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confusion, or cranial nerve palsies), or an encephalitis or en-
cephalopathy syndrome (delirium, obtundation, coma, sei-
zures, hyperreflexia, clonus, broad-based gait, or ataxia) (72,
222). Cognitive impairment is the most predictive indicator of
abnormalities in the cerebrospinal fluid (CSF), which are gen-
erally characterized by a mild to moderate lymphocytic pleo-
cytosis and a moderately elevated protein level (222). CSF
white blood cell counts in adult patients with meningitis are
generally lower than 250 cells/mm3, although counts in chil-
dren may be higher, occasionally exceeding 500 cells/mm3 (32,
103, 246, 253). Morulae are rarely visualized in CSF mononu-
clear cells and, if found, are typically in severely ill patients (32,
94, 222). Long-term sequelae of central nervous system infec-
tions are not well documented; however, persistence of various
symptoms, including headache and photophobia (32), facial or
ocular palsies (50, 99), tremors (16), diminished memory (138)
and confusion (222), for one to several weeks has been re-
ported. Impairment of cognitive performance has been de-
scribed for some pediatric patients following HME (139).

Cough or other respiratory symptoms are described in 20 to
25% of all patients with HME (105, 204); however, pulmonary
manifestations, including interstitial pneumonitis (16, 59, 138),
pleural effusions (109, 173, 243), pulmonary edema (109, 277),
and acute respiratory distress syndrome (155, 211, 213, 215,
246, 271), are frequent components of severe disease.

Patients may develop profound thrombocytopenia and co-
agulopathies and occasionally develop hemorrhagic manifesta-
tions including epistaxsis (208), pulmonary hemorrhage (89,
109, 180, 208), gastrointestinal bleeding (1, 89, 174, 263, 275),
subdural hematomas (180, 206), hematuria (263), and conjunc-
tival hemorrhage (27, 103, 173, 261).

The estimated case-fatality ratio for HME is approximately
3% (188). Fatal disease has been described most frequently in
males (approximately 70%), older patients (median age, 51
years; range, 6 to 80 years), and patients debilitated by under-
lying disease or immunodeficiencies including HIV infection,
malignancy, asplenia, chronic ethanol abuse, and corticoste-
roid therapy. Half of all deaths occur during the second week
of illness (range, 7 to 68 days), and death is generally attributed
to multisystem organ failure, catastrophic hemorrhage, or sec-
ondary bacterial or fungal infections (23, 79, 89, 92, 109, 179,
180, 206, 208, 209, 222).

Secondary infections, including those caused by cytomega-
lovirus, Candida, and Aspergillus spp., have occurred in some
severely ill patients (92, 104) suggesting that infection with E.
chaffeensis may induce suppression of the host immune system
(275). The occurrence of pathogen-mediated immune dysfunc-
tion has also been proposed for animals and patients infected
with A. phagocytophila (87, 227).

Dual infections. Lone star ticks harbor or vector several
other pathogenic or potentially pathogenic bacteria including
the spirochete “Borrelia lonestari” (22, 44, 140), Francisella
tularensis (132), various spotted fever group rickettsiae (118),
and E. ewingii (282). However, there are relatively few well-
documented laboratory confirmed cases of concurrent infec-
tion with E. chaffeensis and another tick-borne agent. PCR-
confirmed HME occurring synchronously with a spotted fever
rickettsiosis has been described (247), and several prospective
epidemiologic studies have demonstrated simultaneous sero-
conversions to E. chaffeensis and spotted fever group rickett-

siae among military personnel exposed to A. americanum-in-
fested habitats (185, 284). Descriptions of patients with
simultaneous HME and Lyme disease (3, 27, 220) require
cautious interpretation (27), particularly because the lone star
tick is not a competent vector of Borrelia burgdorferi (217).
However, in states where populations of A. americanum may
be sympatric with I. scapularis, antibodies reactive with E.
chaffeensis have been detected in patients with well-docu-
mented erythema chronicum migrans (176), suggesting that
patients with Lyme disease may be exposed simultaneously or
sequentially to other tick species carrying E. chaffeensis or
other antigenically related ehrlichiae. A fatal case of HME and
babesiosis in an 85-year-old man has been reported from New
Jersey (141).

“Asymptomatic” Infection

Military training exercises involving troops exposed to tick-
infested habitats where E. chaffeensis is highly endemic have
permitted prospective investigations of seroconversions among
individuals to E. chaffeensis or related antigens following
known tick exposure (185, 216, 284). In one study, more than
two-thirds of persons demonstrating seroconversion reported
no clinical illness (284) while a subsequent investigation con-
ducted at the same location found that 80% of individuals
developing antibodies reactive with E. chaffeensis reported an
illness compatible with ehrlichiosis (185). Although these stud-
ies suggest that asymptomatic infections with E. chaffeensis
occur, a definitive interpretation of the data is precluded by the
potential for antigenically related ehrlichiae to elicit antibodies
that cross-react in serologic tests.

The possibility for asymptomatic or subclinical HME is also
suggested by the relative paucity of described cases of disease
in children, as well as relatively high seroprevalences of anti-
bodies reactive with E. chaffeensis among children residing in
several regions of the southeastern and south-central United
States where this agent is endemic. In one study of children 1
to 17 years of age evaluated at major medical centers in Ar-
kansas, Kentucky, Missouri, North Carolina, Oklahoma, and
Tennessee, age-adjusted prevalence rates of antibody reactive
with E. chaffeensis (or antigenically related ehrlichiae) at titers
of �1:80 ranged from 2 to 22%. At most of these locations, the
age-adjusted seroprevalence exceeded 10% (178). Among the
first 250 cases of ehrlichiosis described, fewer than 10% were in
individuals aged 2 to 13 years (95). Children are known to be
exposed to tick-borne pathogens at levels similar to or greater
than those for adults, as documented by the very high inci-
dences of Rocky Mountain spotted fever and Lyme disease
among children aged 5 to 9 years (55, 67). There is no reason
to believe that children are less commonly exposed than adults
to A. americanum, suggesting that infection with E. chaffeensis
in the pediatric population in general results in less severe
illness relative to HME in adults.

Differential Diagnoses

E. chaffeensis ehrlichiosis is a multisystem disease with pro-
tean manifestations, but because it lacks a pathognomonic
clinical feature, the differential diagnosis of HME is often
broad. Initial symptoms may be generalized and relatively
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vague, and diagnoses frequently include “viral syndrome” in
the context of gastroenteritis, upper respiratory infection,
pneumonia, or meningoencephalitis. Localized findings may
lead to suspicion of pharyngitis, urinary tract infection, epidid-
ymitis, or prostatitis (99, 206). Abdominal pain may mimic
cholecystitis, and cholecystectomies have been performed in
some patients with HME before the correct diagnosis was
made (50, 209). Marked hypotension or laboratory abnormal-
ities associated with HME may be interpreted as indicators of
sepsis, thrombotic thrombocytopenic purpura, or hematologic
neoplasia (103, 138, 180).

A history of recent tick bite or exposure can be elicited from
most patients; however, this feature is absent in approximately
10 to 30% of cases (99, 106, 204, 254). The clinical presentation
of HME may be similar to that of other tick-associated ill-
nesses, especially other ehrlichioses, caused by A. phagocyto-
phila or E. ewingii, and Rocky Mountain spotted fever. Because
most patients with HME who are treated with doxycycline
show obvious clinical improvement within 42 to 72 h, failure to
improve within this interval generally supports an alternative
diagnosis (273).

Comparison with Other Ehrlichioses

The usual symptom complex of fever, headache, myalgia,
and malaise, coupled with thrombocytopenia, leukopenia, and
elevated hepatic transaminase levels, are features shared by
HME, HGE, and E. ewingii ehrlichiosis. However, some dif-
ferences in the frequencies of disease manifestations exist be-
tween HME and the other forms of human ehrlichiosis. Rash,
central nervous system involvement, and gastrointestinal dis-
turbances are reported more often for patients with HME than
for patients with HGE. Comparisons of general measures of
disease severity, including hospitalization rates (2, 20, 30) and
case-fatality ratios (188), suggest that severe or life-threatening
disease occurs more frequently among patients with HME than
among persons with HGE (Table 1). Descriptions of E. ewingii
ehrlichiosis exist for only eight patients, precluding broad com-
parisons of severity. However, no known deaths have been

attributed to E. ewingii, and analysis of a small group of HIV-
infected patients coinfected with E. chaffeensis or E. ewingii
suggests that these patients develop fewer disease manifesta-
tions and complications than do HIV-infected patients with
HME (206).

Treatment and Prevention

In vitro susceptibility testing has shown that E. chaffeensis is
resistant to representatives of most classes of antibiotics in-
cluding aminoglycosides (gentamicin), fluoroquinolones (cip-
rofloxacin), penicillins (penicillin), macrolides and ketolides
(erythromycin and telithromycin), and sulfa-containing drugs
(co-trimoxazole) (18, 41, 234). Clinical experience supports the
results of these tests and indicates that other classes of antibi-
otics, including cephalosporins, are equally ineffective. Ri-
fampin exerts rapidly bactericidal effects in vitro (41); however,
there are no clinical data that evaluate the use of this antibiotic
in patients with HME. Relatively little is known of the bio-
chemical mechanisms responsible for the resistance of E.
chaffeensis to various antimicrobials; however, a molecular ba-
sis for resistance of E. chaffeensis and closely related Ehrlichia
spp. to fluoroquinolones appears to be associated with natural
mutations in the quinolone resistance-determining region of
gyrA, the gene encoding the A subunit of DNA gyrase (182).
Specifically, the presence of alanine residues at two positions
of the dimer interface in the DNA binding area of the A
subunit of this enzyme confers resistence to the activity of
fluoroquinolone antibiotics (182).

E. chaffeensis is susceptible to tetracyclines and their deriv-
atives, broad-spectrum antimicrobials which act by inhibiting
protein synthesis of various bacterial species by reversibly bind-
ing to the 30S ribosomal subunit to prevent the addition of new
amino acids during the formation of peptide chains. Many
other human pathogens, including rickettsiae, chlamydiae, bor-
reliae, mycoplasmas, Actinomyces spp., Vibrio spp., Bartonella
spp., and some Mycobacterium spp. and protozoa, are also
susceptible to tetracyclines. These drugs, particularly doxycy-
line, represent the treatment of choice for all persons with
HME. Most patients become afebrile within 1 to 3 days fol-
lowing treatment with a tetracycline (99, 105, 106); however,
fever may persist in some severely ill persons even after several
days of therapy (105, 107, 221, 274, 277). The optimal duration
of therapy has not been established definitively; however, a
treatment course of 7 to 10 days, or at least 3 days after the
abatement of fever, is widely accepted (18). For most patients,
leukocyte and platelet counts and serum sodium levels correct
to normal values within 3 to 7 days and hepatic transaminase
levels normalize within 1 to 4 weeks (99, 105, 263). Although
susceptibility data are limited to evaluations of a single isolate
(41), there is no clinical evidence to suggest that tetracycline-
resistant strains of E. chaffeensis exist.

In vitro data have shown that E. chaffeensis is resistant to
chloramphenicol (41), and several anecdotal reports describe
treatment failures with this antibiotic (103, 174, 250). Paradox-
ically, there are also reports of apparent treatment successes
with chloramphenicol, particularly in children (28, 96, 124,
221). However, because the efficacy of chloramphenicol re-
mains incompletely defined, this drug should not be considered
primary therapy for HME, even in young children (8).

TABLE 1. Selected clinical characteristics and outcomes of
ehrlichioses for patients infected with E. chaffeensis,

A. phagocytophila, or E. ewingii, extracted from
case series and state surveillance activities

Clinical characteristic or
outcome

No. of patients with positive results/no. for
whom data were available (%) for:

HMEa HGEb E. ewingii
ehrlichiosisc

Fever 256/262 (98) 151/154 (98) 8/8 (100)
Headache 189/244 (77) 110/143 (77) 5/8 (63)
Myalgias 158/242 (65) 99/122 (81) 3/8 (37)
Vomiting 83/231 (36) 16/65 (25) 1/4 (25)
Rash 95/270 (35) 11/111 (10) 0/4 (0)
Cough 54/215 (25) 13/65 (20) 0/4 (0)
Mental-status changes 39/197 (20) 9/65 (14) NAd

Hospitalization 196/306 (64) 61/128 (48) 6/8 (75)
Death 9/287 (3.1) 3/266 (1.1) 0/8 (0)

a Data from reference 48, 99, 105, 206, and 255.
b Data from references 2, 20, 30, 52, 108, 172, and 276.
c Data from references 42 and 206.
d NA, no data available.
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Reducing contact with infected ticks lowers the risk of ac-
quiring HME. Because it is unreasonable to assume that a
person can eliminate all activities that may result in these
contacts, prevention techniques primarily involve personal pro-
tection. Wearing light-colored clothing that facilitates the de-
tection of crawling or attached ticks and the use of repellents
containing DEET (n,n-diethyl-m-toluamide) can minimize the
risk of tick bites. However, the best protective measure consists
of a thorough body examination for ticks after returning from
potentially tick-infested areas. It is not known how long A.
americanum must remain attached before it can transmit E.
chaffeensis to a host; however, because other tick species gen-
erally require several hours of attachment before bacteria are
transmitted (131, 143), frequent inspections for and prompt
removal of attached ticks by using forceps or tweezers is an
important method to minimize the risk of HME.

LABORATORY DIAGNOSIS

A diagnosis of HME can be confirmed by several laboratory
methods. In order of their routine application, these are sero-
logic tests to measure specific antibody titers, detection of
morulae in peripheral blood or in CSF leukocytes, detection of
ehrlichial DNA by PCR of blood or CSF, direct detection of
ehrlichiae in tissue samples by immunohistochemistry (dis-
cussed above under Pathology), and isolation of bacteria.

Serologic Testing

The most widely available laboratory diagnostic tests detect
and measure antibody reactive with E. chaffeensis (273). Al-
though these assays remain the most frequently utilized con-
firmatory methods, there are several caveats to their use. Cur-
rently available serologic tests may return negative results for
the majority of patients during the first week of illness. Addi-
tionally, the discovery of other pathogenic species of related
bacteria that share cross-reacting antigens (e.g., A. phagocyto-
phila and E. ewingii) requires careful interpretation and corre-
lation of diagnostic test results with clinical and epidemiologic
findings to avoid incorrect designation of the specific agent.

Indirect immunofluorescence assay. Most patients with
HME have been diagnosed by the indirect immunofluores-
cence assay (IFA). The original IFA format for detecting an-
tibodies reactive with E. chaffeensis used a surrogate antigen,
E. canis, as substrate (78). Currently, the standard IFA for
HME uses the Arkansas strain of E. chaffeensis (9) cultivated in
DH82 cells or Vero cells (75) as substrate. Paired sera col-
lected during a 3- to 6-week interval represent the preferred
specimens for serologic evaluation of HME. Both immuno-
globulin M (IgM) and IgG antibodies can be measured using
the IFA (61); however, the IgG IFA test is negative in as many
as 80% of patients during the first week of illness and the IgM
titers may also be uninformative at this time (61). It is impor-
tant to obtain a convalescent-phase serum specimen since most
(�80%) patients have developed diagnostic IFA titers by 6
weeks postinfection (61, 255). Unfortunately for the purposes
of diagnosis, individuals with HME initially present for care a
median of 4 days after disease onset (105), and often this initial
visit is the only time at which a serum sample is obtained. The
impact of these observations on surveillance and underreport-

ing of HME has been discussed (60, 61). Few data are available
to describe the kinetics of IFA-detectable antibody for E.
chaffeensis infections (78), and none have been published using
E. chaffeensis antigen as a testing substrate.

The diagnosis of ehrlichiosis in a person with a clinically
compatible illness can be confirmed by seroconversion or a
fourfold or greater change in antibody titer (sometimes limited
to a rise in antibody titer [273]) between acute- and convales-
cent-phase samples (51). Recommendations for diagnosing
HME in a patient with compatible illness promulgated by the
Task Force on Consensus Approach for Ehrlichiosis include a
single reciprocal titer of �256 as sufficient to confirm disease
and a titer of 64 as indicating probable HME (273); however,
national surveillance efforts have considered cases with a single
IFA titer of �64 as only probable HME, regardless of the
magnitude of the end-point titer (188).

Antibodies cross-reactive with a number of ehrlichial anti-
gens (57) and different Ehrlichia species are well documented
in humans (48, 64). Western immunoblotting analyses using
purified E. chaffeensis and A. phagocytophila proteins suggest
that patient antibodies dually reactive with these agents are
recognizing homologous heat shock proteins, not major OMPs
(268). Because cross-reactivity among ehrlichial species is seen
in 10 to 30% of patient sera, sera should be tested against both
E. chaffeensis and A. phagocytophila antigens when ascribing
specific etiology (64). In general, a fourfold or higher end-
point IFA titer is useful in discriminating between etiologic
agents when PCR has been used to confirm the diagnosis.
Many end-point IFA titers to E. chaffeensis and A. phagocyto-
phila antigens are within a twofold range, precluding the use of
IFA serologic testing from ascribing specific etiology (64).
Cross reactivity among antibodies to a number of ehrlichial
species has been an important feature in defining new human
pathogens. Just as E. canis provided a useful surrogate antigen
for diagnosing HME until E. chaffeensis was cultured, E.
chaffeensis antigens have been used to diagnose some cases of
ehrlichiosis caused by E. ewingii (42).

Negative serologic results for the acute-phase sample do not
necessarily exclude the diagnosis. Similarly, the lack of sero-
conversion does not rule out HME. Some small fraction of
patients do not develop measurable antibody following infec-
tion with E. chaffeensis. In some instances, this failure to sero-
convert can be attributed to immune impairment (208, 209) or
to early death due to rapidly progressive disease, as seen with
some cases of Rocky Mountain spotted fever (207), but in
other instances the reasons are unclear (255). Early treatment
with a tetracycline-class antibiotic occassionally reduces or ab-
rogates the antibody response to R. rickettsii (245), and it
appears that a similar phenomenon occurs with E. chaffeensis
(254).

Western blotting. The use of Western blotting has permitted
the identification of antigenic variability among isolates of E.
chaffeensis and identified variability in the reactivity of patient
sera to a number of E. chaffeensis antigens (40, 56). The ma-
jority of HME patients with detectable IFA reactivity to whole
E. chaffeensis preparations have antibody reactive with the
120-kDa protein (56), and a recombinant 120-kDa protein has
potential application as a serodiagnostic antigen (288). A re-
combinant major OMP of E. chaffeensis (rP30) has been used
as antigen in immunoblot analysis to determine specific reac-
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tivity to E. chaffeensis among serum samples dually reactive
with this agent and with A. phagocytophila (268). Western blot-
ting of E. chaffeensis antigen has also been useful in diagnosing
human infections with E. ewingii, which was first recognized as
a human pathogen in 1999. Because E. ewingii has not yet been
cultured, homologous IFA antigens are unavailable. However,
human serum samples from patients infected with E. ewingii
fail to react with the 28-kDa antigen of E. chaffeensis (42).

Other assays. Enzyme linked-immunosorbent assays using
whole cell antigen or recombinant protein antigens hold prom-
ise for the future diagnosis of HGE (134) but are still in the
developmental stage for diagnosis of HME. An E. chaffeensis
homolog of the major antigenic protein 2 of E. ruminantium
has been cloned and sequenced (35). This 21-kDa protein from
E. chaffeensis has been expressed in Escherichia coli and suc-
cessfully adapted to an enzyme-linked immunosorbent assay
format to detect antibodies from patients with HME (5). Pre-
liminary findings with 20 human serum samples indicated a
diagnostic sensitivity of 95%, using the IFA as the “gold stan-
dard,” and a diagnostic specificity of 100%.

Visualization of Morulae and Staining Methods

Morulae have been identified in smears of peripheral blood,
buffy coat preparations, and bone marrow aspirates by using
various eosin-azure (Romanovsky)-type stains, including
Wright’s, Diff-Quik, Giemsa’s, and Leishman’s. Although this
technique offers the most rapid method of diagnosis, it is con-
sidered relatively insensitive and is seldom confirmatory in
clinical practice. In this context, morula-positive smears are
characteristically seen in a minority of patients, even in pa-
tients from whom the organism has been isolated (61, 73, 209,
255, 262). Even when visualized, morulae are generally de-
tected in fewer than 5% of circulating leukocytes. Case series
describing patients with culture or PCR-confirmed HME re-
port sensitivities of approximately 20 to 30% for morula visu-
alization as an independent diagnostic indicator (61, 99, 255).
However, this figure may be biased to the high side due to (i)
intensified retrospective review of smears in patients initially
deemed negative but in whom the diagnosis was later con-
firmed by other methods (208) or (ii) small numbers of patients
and inclusion of a disproportionate number of individuals who
are immunocompromised and are more likely to develop
highly concentrated bacteremias. Sensitivity issues are further
confounded by inconsistencies in the number of cells or smears
examined and the relative experience of the microscopist.

Other inclusions in leukocytes, including Döhle bodies, toxic
granulations, Auer rods, phagocytosed bacteria or fungi, and
superimposed platelets or debris, may be confused with moru-
lae (104, 273). Similarly, familial conditions, including May-
Hegglin anomaly, Alder-Reilly anomaly, and Chédiak-Higashi
syndrome, are associated with intraleukocytic inclusions poten-
tially mistaken for morulae by inexperienced observers. In
some severely ill patients, morulae of E. chaffeensis have been
identified in mononuclear cells in the CSF (32, 94, 253).

PCR Amplification

PCR assays to identify DNA from Ehrlichia spp. in whole
blood, CSF, and serum are becoming standard complements to

serologic assays. Frequently, positive results can be obtained by
PCR using an acute-phase whole-blood sample from E.
chaffeensis patients at a time when serologic testing is still
negative (61). Several of the genes described above have been
used to various extents to diagnose or characterize E. chaffeen-
sis infections; however, their relative analytic and diagnostic
sensitivities have not been systematically investigated. The
Task Force on Consensus Approach for Ehrlichiosis recog-
nizes the necessity for each laboratory to establish and validate
its own molecular assays for the diagnosis of HME (273).
However, systematic sample collections from well-character-
ized patients, such as those from whom isolates of E. chaffeen-
sis are obtained, are needed for assay validation and any future
attempts at standardization of PCR. Historically, the 16S
rRNA gene has been the primary molecular target for diag-
nosing E. chaffeensis infections in humans (11, 99). This gene
has also been the most widely used to identify E. chaffeensis
DNA in ticks (10, 135, 235) and vertebrate reservoirs (150,
170).

The groESL heat shock operon may be a useful target for a
species-specific diagnostic PCR because of variation in the
length and content of the spacer region between E. chaffeensis
and A. phagocytophla (260) and because it appears to be com-
pletely conserved among isolates (209). The 120-kDa antigen
gene has been used less extensively than the 16S rRNA gene as
a diagnostic target, but characterization of amplicons resulting
from its use have potential application to molecular epidemi-
ologic studies (59, 258, 259, 287).

Like the 120-kDa antigen gene, the VLPT gene has a vari-
able number of tandem repeats and other variations at the
nucleotide level. The frequency of the number of repeat units
found among different E. chaffeensis isolates obtained from
humans suggests that VLPT profiles represented by four and
five repeats are the most frequently encountered, while a six-
repeat strain has been detected only once in a human (255,
259). There may be some geographic variation among the
prevalence of strains with different repeat units based on sam-
pling of tick pools, since three- and six-repeat variants of the
VLPT were absent from sites in Maryland (258).

The 28-kDa outer membrane proteins (p28) of E. chaffeensis
are encoded by a multigene family homologous to major anti-
genic protein 1 in E. ruminantium (202, 226, 291). This family
of genes has not been investigated as a diagnostic PCR target
for E. chaffeensis infection but has multiple potential diagnostic
applications (226).

Isolation

The isolation of Ehrlichia species from blood, CSF, and
other tissues requires a laboratory capable of processing clin-
ical specimens using cell culture techniques. In this context, a
clinical laboratory equipped for virus isolations could poten-
tially culture E. chaffeensis. In some cases, primary isolation
has required several weeks (73, 90, 209), although morulae
have been identified in some primary cultures as early as 2 days
following inoculation (206, 255). Most isolates of E. chaffeensis
have been obtained from EDTA-anticoagulated whole-blood
specimens collected from patients during the acute phase of
their illnesses. In addition to blood, E. chaffeensis has been
isolated from CSF (255) and bone marrow aspirate material
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(Centers for Disease Control and Prevention [CDC], unpub-
lished data). Because culturing of these bacteria is seldom
undertaken, the sensitivity of isolation compared with other
laboratory methods has been investigated in only a few circum-
stances (61).

EPIDEMIOLOGY AND ECOLOGY

The epidemiology and ecology of E. chaffeensis are incom-
pletely understood. Although this was the first ehrlichia iden-
tified as a human pathogen in the United States, research on
the epidemiology and natural history of this pathogen has
lagged behind similar efforts afforded to A. phagocytophila.
Because A. phagocytophila is transmitted by ticks belonging to
the genus Ixodes which also transmit the spirochete B. burg-
dorferi, it has been possible to build on the epidemiologic
knowledge and public health infrastructure accumulated over
nearly two decades of study of Lyme disease in the northeast-
ern and north-central United States.

Geographic Distribution

Although there are an increasing number of reports of po-
tential human infections caused by E. chaffeensis in countries
other than the United States, these studies have relied on
serologic tests that lack the specificity to ascribe etiology to the
level of ehrlichial species. Other reports have identified DNA
of E. chaffeensis or closely related bacteria in ticks from coun-
tries where human disease has not been described. Because the
data from countries other than the United States indicating the
presence of E. chaffeensis and human disease caused by this
agent are currently equivocal, these topics are dealt with sep-
arately.

United States. The majority of cases of HME are reported
from states in the south-central and southeastern United
States, where this pathogen’s primary tick vector, Amblyomma
americanum, reaches its highest population densities and hu-
man exposure is greatest (98, 105, 188). The geographic dis-
tribution of �500 reported cases of HME (Fig. 4) reflects both
the region where the pathogen is endemic and locations from
which serum samples submitted for testing to the CDC have
yielded positive results. In some instances, these cases have
resulted from exposure to ticks following recent travel to states
where HME is endemic rather than autochthonous acquisition
in the reporting state (16, 174, 181, 194, 224). However, it is not
always possible to sort out these factors from information
provided with the submitted samples (60, 188). Estimates of
the incidence of HME indicate a region of highest risk from
central Texas through Oklahoma and Missouri east to Virginia
and all states to the south. Sporadic cases of HME, which
occasionally represent serologic cross-reactivity, are reported
up the East Coast, most notably along the Atlantic coastal
plain.

In addition to variation in surveillance and reporting, anti-
bodies resulting from infections with A. phagocytophila and E.
ewingii are variably cross-reactive with E. chaffeensis antigens
(42, 64, 268). Because reliance on serologic test results alone
may preclude the ascription of etiologic agent, surveillance
reports and distribution maps of the different human ehrlichio-
ses that have relied primarily on serologic tests conducted with
a limited number of antigens should be interpreted as general
indicators of regions of endemic disease. Although 46 states in
the continental United States have reported HME (Fig. 4),
confirmed cases based on the isolation of E. chaffeensis or
identification of ehrlichial DNA in human samples through
PCR amplification and sequencing of amplicons are generally

FIG. 4. Presumptive cases of HME diagnosed by IFA at CDC, 1986 to 1997. The numbers within the states indicate the origin of the sample
tested but not necessarily the state of exposure.
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restricted to states in the southeastern, south-central, and cen-
tral Atlantic United States (59, 209, 209, 255, 262). However,
PCR-based surveys from other regions in the United States
have documented E. chaffeensis DNA in A. americanum ticks
from most locations where sufficient samples have been col-
lected, including the northeastern states (135). Therefore, re-
gions where E. chaffeensis is endemic should be considered
dynamic, and HME may continue to be recognized from ad-
ditional states as surveillance and access to laboratory testing
improve.

Other locations. Although E. chaffeensis has been isolated
only from sources in the United States, there are increasing
data to suggest that ehrlichiae which are closely related or
identical to E. chaffeensis occur throughout the world. Patients
with antibodies reactive with E. chaffeensis or antigenically
related ehrlichiae have been reported from Argentina (232),
Israel (147), Italy (199, 244), Mali (267), Mexico (120), Portu-
gal (192), Korea (240), and Thailand (129). Because the only
proven tick vector of E. chaffeensis is restricted to North Amer-
ica, caution is required in interpreting data based solely on
serologic testing (39). Ehrlichia spp. that are closely related or
identical to E. chaffeensis have been identified from other spe-
cies of ticks collected in Japan, Russia, and China (4, 47, 223,
249), although the significance of these findings for human
disease is unclear.

Surveillance for HME

Human ehrlichioses were made nationally reportable to
CDC in 1999 (54), although not all state health departments in
states where the ehrlichioses are notifiable conditions are cur-
rently reporting cases to the weekly national database through
the National Electronic Telecommunications Surveillance Sys-
tem. Through December 2000, ehrlichioses were notifiable dis-
eases in 36 states. The current case definition for ehrlichiosis
includes a broad clinical description and specific laboratory

criteria for confirmation of disease. Three categories of con-
firmed or probable ehrlichiosis are reportable to CDC: (i)
human ehrlichiosis caused by E. chaffeensis, (ii) human ehrli-
chiosis caused by A. phagocytophila, and (iii) human ehrlichio-
sis (other or unspecified agent), which includes cases that can-
not be easily classified by available laboratory techniques and
cases caused by newly recognized ehrlichial pathogens of hu-
mans, such as E. ewingii (49).

Laboratory criteria for a diagnosis of confirmed HME as
defined by the Council of State and Territorial Epidemiologists
include demonstration of a fourfold or greater change in an-
tibody titer to E. chaffeensis antigen by IFA in paired serum
samples, or a positive PCR assay and confirmation of E.
chaffeensis DNA, or identification of morulae in leukocytes and
a positive IFA titer to E. chaffeensis antigen, or immunostain-
ing of E. chaffeensis antigen in a biopsy or autopsy sample, or
culture of E. chaffeensis from a clinical specimen (51). A con-
firmed case of HME requires a patient to have a clinically
compatible illness that is laboratory confirmed. A probable
case of HME requires a patient to have a clinically compatible
illness with either a single IFA titer at or above the cutoff
dilution or the visualization of morulae in leukocytes.

Passive surveillance. A total of 200 cases of confirmed or
probable HME were reported to CDC from state health de-
partments during 2000. In comparison, 156 cases were re-
ported to CDC during 1999 (49; unpublished data) (Fig. 5).
Even when a high level of national reporting is achieved, pas-
sive surveillance for HME underestimates true incidence of
this disease for various reasons. Many states do not have ad-
equate surveillance systems for the reporting and laboratory
diagnosis of HME (188), and reliance on serologic testing
misses many individuals during the acute phase of disease
before antibodies have developed (60, 61). Despite these lim-
itations, passive surveillance for ehrlichiosis has revealed an-
nual reported rates from states and counties that are similar to
those reported for Rocky Mountain spotted fever (125, 265).

FIG. 5. Cases of human ehrlichioses in the United States during 1986 through 1999, compiled through reports from individual states and CDC
records.
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In a review of �700 cases of HME compiled by CDC from
1986 to 1997, the five states with the highest average annual
incidence were Arkansas (5.53 per million population), North
Carolina (4.72), Missouri (3.05), Oklahoma (2.90), and New
Jersey (1.47) (188).

Active surveillance. Reliable incidence data for HME based
on active surveillance are sparse and have been restricted to a
few geographic regions. In general, incidence based on active
surveillance is approximately 10-fold higher than the highest
rates reported by individual states for passive surveillance. The
estimated incidence for hospitalized cases of HME was 5.5 per
100,000 persons in southeastern Georgia, higher than that for
Rocky Mountain spotted fever in the same population during
the study period (106). Provisional estimates of 8 and 14 cases
of HME per 100,000 persons during 1997 and 1998 were ob-
tained by active surveillance in southeast Missouri (204). The
incidence of ehrlichiosis was slightly greater than that of Rocky
Mountain spotted fever in a cohort of patients presenting with
fever and a history of tick bite over a 2-year period in central
North Carolina (48). In comparison, the incidence for HGE
was estimated by prospective population-based surveillance to
range between 24 cases per 100,000 and 51 cases per 100,000
persons per year from 1997 to 1999 in 12 towns within the
Lyme disease-endemic area of Connecticut (133).

Mechanisms of Transmission and Seasonality of Infection

Ehrlichiae affecting humans in the United States are trans-
mitted almost invariably through the bites of infected ticks.
Cases of HGE have been reported in persons for whom the
only known risk factor was exposure to deer blood and tissues
during the processing of fresh animal carcasses, suggesting that
direct contact with potentially infectious blood from a verte-
brate reservoir may initiate an infection (21). However, routes
of transmission for E. chaffeensis other than tick bite are po-
tential threats but are epidemiologically insignificant or un-
proven at present. Because E. chaffeensis can survive in refrig-
erated, anticoagulated blood for at least 11 days (187), there is
a theoretical risk of acquiring the pathogen from transfused
blood.

HME has been reported during March thorough November,
although approximately 70% of cases occur during May
through July (105, 106, 254). This seasonality corresponds ap-
proximately to the peak feeding activity periods of nymphal
and adult Amblyomma americanum ticks throughout much of
their range. Reports of HME occurring in late fall and winter
are unusual but may be more frequent in the southern range of
A. americanum, such as in Texas (224).

Patient Demographics and Risk Factors for HME

HME is most commonly diagnosed in adults, and the ma-
jority of patients are �40 years of age. Men are diagnosed
more frequently than women in all age groups, with an overall
male-to-female ratio of �2:1 (105, 204). Infections described
in children comprise a small fraction of the total cases (95).
Most cases of HME occur as sporadic infections. Recreational
or occupational activities that place individuals in rural habi-
tats infested by ticks are well-documented risk factors. A his-
tory of a tick bite has been reported by 68% of patients in

national surveys (105), but that number can approach �80% in
smaller investigations or case series (99, 204, 254).

Outbreaks of HME have been documented in several loca-
tions associated with recreational or occupational activities. In
Tennessee, golfers with poorer scores were more likely to have
antibodies reactive with E. chaffeensis, presumably because
their lack of skill placed them more frequently in the wooded
or grassy locations adjacent to the fairway, where ticks abound
(254). Outbreaks of HME or infections caused by antigenically
related ehrlichiae are well- documented among military per-
sonnel participating in field exercises in New Jersey (216) and
Arkansas (15, 284). A focus of tick-borne disease at Fort
Chaffee, Ark., provided the first isolate of E. chaffeensis (73)
and continues to be a location of exceptionally high risk for
acquiring infections from tick bite (185).

Tick Vectors

A. americanum. As a geographic portrait of HME emerged
in the late 1980s, investigators identified a predominance of
patients from the south-central, southeastern, and mid-Atlan-
tic states. Because this region closely approximates the recog-
nized distribution of Amblyomma americanum (commonly
known as the lone star tick for the silvery white spot on its
dorsal surface), this tick was soon implicated as a potential
vector for E. chaffeensis (98). This hypothesis was supported
further by amplification of E. chaffeensis DNA from pools of A.
americanum adults collected from various locations in the east-
ern United States (10), experimental transmission of E.
chaffeensis among white-tailed deer by adult and nymphal lone
star ticks (100), and retrospective studies demonstrating tem-
poral and spatial associations between lone star tick infesta-
tions and the presence of antibodies reactive with E. chaffeensis
in white-tailed deer (166, 167).

A. americanum is a three-host, hard tick distributed from
west-central Texas north to Iowa and eastward in a broad belt
spanning the southeastern United States. Along the Atlantic
coast, the range of this species extends north through coastal
areas of New England. It is found predominantly in woodland
habitats, particularly young second-growth forests with dense
understory vegetation (123). Lone star ticks are notorious for
their aggressive and relatively nonspecific feeding behavior.
Adult A. americanum ticks feed on medium-sized and large
mammals, and larvae and nymphs infest various ground-feed-
ing birds, medium-sized and large mammals, and, rarely, small
mammals (62, 151). All three stages bite humans. Adult and
nymphal lone star ticks are most active during April through
June and decline markedly in abundance and activity as sum-
mer progresses (71, 123, 137). The seasonal activity of adult
and nymphal ticks, which precedes that of larvae, increases the
probability of that larvae will acquire the pathogen from an
infected vertebrate during the first blood meal.

E. chaffeensis has been detected in female and male lone star
ticks collected in Alabama, Arkansas, Connecticut, Georgia,
Florida, Indiana, Kansas, Kentucky, Maryland, Missouri,
North Carolina, New Jersey, Rhode Island, and Virginia (10,
43, 135, 170, 235, 256, 257, 278). Infection prevalences presum-
ably vary intrinsically across location, sampling period, and life
stage of Amblyomma ticks tested and extrinsically with the
assaying method (e.g., numbers of ticks sampled, sampling
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methods, and sensitivity of the assay), making generalizations
difficult. E. chaffeensis DNA has been found by PCR in ap-
proximately 5 to 15% of adult ticks collected from areas where
the agent is endemic and tested individually (135, 170, 235,
278). Several studies have obtained a crude minimum infection
ratio (MIR) from pools of adult ticks, but this method char-
acteristically underestimates the level of infection (170, 257).
Accordingly, infection prevalences determined by pooling are
lower than those observed with individual ticks and generally
range from 1 to 5% (Table 2). As molecular assays become
increasingly sensitive, more accurate estimates of infection
prevalence in ticks may be possible (101).

Infections in nymphal A. americanum ticks have been de-
scribed from Connecticut, Florida, Kansas, Maryland, Mis-
souri, New Jersey, and North Carolina (235, 257, 258). In the
largest sample evaluated to date, 81 pools representing 2,723
nymphal ticks collected from Harford County, Md., showed an
overall MIR of 0.8%. By contrast, the MIR of adult ticks
collected at the same location was 3.5% (258). In general,
infection prevalences appear to be lower among nymphal ticks
than among adults, and failure to detect E. chaffeensis in
nymphs collected at sites with confirmed infections in adult A.
americanum has been described by several investigators (10,
43).

As with many other tick-transmitted pathogens, infections of
tick populations may appear spatially or temporally discontin-
uous, and wide variations in infection prevalences can be ex-
pected among ticks collected from closely spaced geographic
locales (43, 278) or among ticks collected at the same site
during different years (256). In this context, infection may not
always be evident among ticks at a specific location at a par-
ticular time of sampling (43, 278). These differences have been
ascribed to natural variations of infection of ticks by ehrlichiae,
clustering of infected ticks, or the sampling techniques used
(256).

Little is known about the vector-pathogen relationship be-
tween A. americanum and E. chaffeensis. Detection of ehrli-
chiae in questing nymphal and adult ticks and successful trans-
mission of the pathogen between deer by nymphs and adult

ticks infected during the previous life stage confirm that E.
chaffeensis is passaged transstadially (100). Detection of E.
chaffeensis in larval A. americanum has been described in a
single report (257); however, there are no other data to suggest
that transovarial transmission occurs, and absence of transo-
varial transmission has been demonstrated in studies of the
closely related species E. canis and its vector, Rhipicephalus
sanguineus (122). Nothing is known of the development of E.
chaffeensis in the vector or the exact mechanism by which
ehrlichiae are transmitted to the vertebrate host during feed-
ing. The risk that the bite of an infected lone star tick will
successfully transmit E. chaffeensis, even if detectable by mo-
lecular methods, remains unknown. Lone star ticks may harbor
other recently identified species of ehrlichiae. In this context,
A. americanum is the putative vector of E. ewingii (13, 282) and
an as yet unamed Ehrlichia sp. of white-tailed deer (36, 169).

Other tick species. PCR has been used to detect DNA of E.
chaffeensis in other tick species, including the dog tick, Derma-
centor variabilis (10, 152, 235), the Western blacklegged tick,
Ixodes pacificus (152), Ixodes ricinus in Russia (4), and the ticks
Amblyomma testudinarium and Haemaphysalis yeni collected
from domesticated and wild animals in southern China (47).
Detection of DNA of ehrlichiae within a particular tick species
does not conclusively incriminate that tick as an efficient vector
(83), and the role of these or other tick species as natural
vectors of HME has not been established definitively. Simi-
larly, the Gulf Coast tick (Amblyomma maculatum) has been
implicated as a potential vector because of feeding proclivities
and a range distribution similar to those of the lone star tick,
although insufficient data exist to support or refute the role of
this tick in the transmission of E. chaffeensis (149).

Vertebrate Reservoirs

E. chaffeensis is maintained in nature as a complex zoonosis,
potentially involving many vertebrate species that serve as
competent reservoirs for the bacterium, as sources of blood for
tick vectors, or as both. The catholic feeding proclivity of Am-
blyomma americanum for the blood of a wide range of mam-

TABLE 2. Reported prevalences of infection with E. chaffeensis in lone star ticksa as determined by PCR

Location Yr of
collection

Individuals
or pooled

Direct or
nested PCR

% Infected or MIR
(total no. tested) Reference(s)

Multiple counties, Mo. NSb Pooled Direct 1.2b (85) 10, 287
Multiple counties, N.C. NS Pooled Direct 1.2b (436) 10, 287
Bullitt Co., Ky. NS Pooled Direct 3.6b (28) 10, 287
Clarke Co., Ga. 1993–1995 Individual Nested 12.0 (50) 170
Clarke Co., Ga. 1993–1995 Pooled Nested 3.5b (402) 170
Multiple counties, Mo. 1995 Individual Nested 23.0c (48) 235
Multiple counties, Ind. 1995 Pooled Direct 4.9b (430) 43
Multiple counties, Ind. 1997 Pooled Direct 1.6b,c (920) 256
Multiple counties, Ind. 1998 Pooled Direct 3.8b (262) 136
Harford Co., Md. 1997 Pooled Nested 3.5b (138) 258
Multiple counties, Ga. NS Individual Nested 5.2 (250) 278
Bristol Co., R.I. 1992 Individual Direct 11.5 (52) 135
Multiple counties, Conn. 1996–1998 Individual Direct 7.6c (106) 135
Multiple counties, Fla. 1998 Individual Nested 13.6 (323) CDC, unpublished

data

a Adult ticks, unless otherwise specified.
b NS, not specified
c Stage(s) not specified.
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malian and avian species is well described (33, 123). Consid-
erably less is known about which vertebrates can serve as
competent reservoirs for E. chaffeensis (Table 3). It is unknown
if all strains of E. chaffeensis isolated from or detected in
various animal species are pathogenic to humans.

White-tailed deer. The white-tailed deer (Odocoileus virgin-
ianus) currently stands as the sole vertebrate species recog-
nized as a complete and sufficient host for maintaining the
transmission cycle of E. chaffeensis (Fig. 6). White-tailed deer
are an important source of blood for adult and immature
stages of A. americanum (33, 123). These deer are also natu-
rally infected with E. chaffeensis in the southeastern United
States based on PCR results (170) and isolation of the bacte-
rium (169). Deer experimentally infected with various isolates
of E. chaffeensis have maintained viable bacteremias for at least
several weeks to months postinfection.

Recently infected white-tailed deer may circulate the highest
levels of ehrlichiae in their blood during the 3 weeks after
initial infection (80). In general, bacteremias in white-tailed
deer appear to be relatively low, as evidenced by difficulty in
detecting infection by PCR when isolation is successful (70),
and morulae have been visualized in the peripheral blood of
only one, severely debilitated animal (163). Experimentally
infected deer can infect laboratory-reared larval and nymphal
A. americanum ticks, which transstadially maintain infections
(100), but this has not been consistently demonstrated (70).
Infection with E. chaffeensis has been established in white-
tailed deer tissue collected in 1985 by using PCR (163), a date
prior to the description of the first case of HME.

The prevalence of E. chaffeensis infections among popula-
tions of white-tailed deer in nature is difficult to determine.
The duration of patent infection in this reservoir can be
months, and recrudescence or persistent infection occurs. In
natural settings, yearling deer may be particularly susceptible
to persistent bacteremia and therefore may represent impor-
tant components in the epizootiology of E. chaffeensis (170).
Antibody surveys have demonstrated high seroprevalences
(frequently �50% at sites where any antibody-positive animals
were present) of antibody reactive with E. chaffeensis antigens
among white-tailed deer populations (76, 136, 170, 197), and
field data have confirmed a site-specific correlation between
antibody prevalence and the presence of A. americanum (166).
However, deer can be infected and coinfected with several
different Ehrlichia and Anaplasma species, which are antigeni-
cally related to different degrees (81, 164). Studies using only

serologic testing cannot routinely distinguish between antibod-
ies resulting from infection with E. chaffeensis and those re-
sulting from infection with antigenically related species, includ-
ing the white-tailed deer agent and E. ewingii.

Goats. Domestic goats (Ovis species) may serve as hosts for
all stages of the life cycle of A. americanum (33, 123, 162).
Although knowledge of goats as potential reservoir species for
E. chaffeensis in the United States is limited to a single report,
this detailed study found reactive antibody in 28 (74%) of 38
animals and ehrlichial DNA in whole blood of 6 (16%) of 38
goats (85). An isolate of E. chaffeensis was obtained from a
single goat sampled at two time points 40 days apart, suggest-
ing that a long-lived or persistent infection may occur in this
species. Apart from E. chaffeensis isolates from deer, this is the
only other naturally occurring isolate from a mammal other
than humans.

Domestic dogs. Dogs (Canis familiaris or C. lupus) are po-
tentially the most important reservoir for any zoonotic patho-
gen affecting humans because of their numbers (�61,000,000
in the United States as of March 1998 [www.apapets.com/
petstats2.htm]), their presence throughout the United States,
their usual free-roaming life-styles which give them access to
tick-infested habitats, and their proximity to humans. Domestic
dogs can serve as hosts for all stages of the life cycle of A.
americanum (33, 123) and provide a convenient vehicle for
transport of ticks from various habitats into the peridomestic
environment. In the first description of canine infections with
E. chaffeensis, 28 (38%) of 74 dogs from southeastern Virginia
were shown to have reactive antibody and 8 (42%) of 19 had
ehrlichial DNA in whole-blood samples detected by PCR (74).
A survey conducted in Oklahoma using similar methods found
7 (10.8%) of 65 dogs with antibody reactive to E. chaffeensis
antigens by IFA and 4 animals with E. chaffeensis DNA in
whole-blood samples detected by PCR (198).

Dogs are susceptible to disease caused by E. chaffeensis and
by several other closely related pathogens including E. canis, E.
ewingii, Anaplasma platys (37) and possibly other closely re-
lated Ehrlichia species (7). The potential for coinfection or
sequential infections with different agents may complicate clin-
ical descriptions of naturally acquired canine disease caused by
E. chaffeensis (110). Studies suggest that dogs infected by E.
chaffeensis remain infected or can be reinfected with this or-
ganism after doxycycline treatment (37, 110).

Coyotes. Coyotes (Canis latrans) have expanded their range
in North America since the 1800s, when they were restricted to

TABLE 3. Mammalian species implicated as reservoir hosts of E. chaffeensisa

Species Evidence Authority

Odocoileus virginianus (white-tailed deer) Antibody, PCR, isolation, experimental transmission 70, 100, 167, 169
Ovis species (domestic goat) Antibody, PCR, isolation 85
Canis familiarus or C. lupus (domestic dog) Antibody, PCR, experimental transmission 74, 198
Canis latrans (coyote) PCR 150
Vulpes vulpes (red fox) Antibody, experimental transmission 69
Procyon lotor (raccoon) Antibody 65, 170
Peromyscus leucopus (white-footed mouse) Antibody 175
Didelphis virginianus (Virginia possum) Antibody 170

a Negative results have been obtained for serologic tests conducted on P. leucopus, Sigmodon hispidus, Sciurus carolinensis, Sciurus niger, Orizomys pulustris, Mus
musculus, Rattus norvegicus, Reithrodontomys humulis, Ochrotomys nuttali, and Tamias striatus from the southeastern United States (168, 170) and P. leucopus, S.
hispidus, and M. musculus from North Carolina (251).
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the Great Plains and the western United States, and are cur-
rently found throughout the United States and most of Canada
(29, 191). These carnivores exist in most habitats and thrive in
suburban areas (17). Although most abundant in the south-
western and midwestern United States, where population den-
sities can reach �2 animals per km2 (148), populations are
increasing in New England and West Coast locations. Since
1980, populations of coyotes in the southeastern United States
have increased dramatically, as evidenced by an increase in the
harvest of these animals in Mississippi from 500 in 1975 to
40,000 in 1988 (191). Coyotes serve as hosts for adult and
nymphal stages of A. americanum (34, 66). Coyotes naturally
infected with E. chaffeensis have been identified in Oklahoma
(150). Infection among wild coyotes occurred at a very high
prevalence (15 of 21 [71%]), suggesting that these animals

could be a significant reservoir for E. chaffeensis over their
extensive geographic range.

Other species. Red foxes (Vulpes vulpes) can serve as hosts
for all stages of A. americanum (266). In a single experiment,
red foxes, but not gray foxes (Urocyon cinereoargenteus), were
susceptible to infection with a white-tailed deer isolate of E.
chaffeensis, and ehrlichiae could be reisolated for 14 days
postinfection. Antibody has been detected in field surveys
among both red and gray foxes (69), but until additional evi-
dence becomes available, the role of this carnivore in the
maintenance of E. chaffeensis is uncertain.

Raccoons (Procyon lotor) are frequently parasitized by all
life stages of A. americanum (33, 266). Raccoons occur
throughout much of North America and reach some of their
highest population densities in areas coinhabited by humans

FIG. 6. A life cycle of E. chaffeensis. Noninfected larvae obtaining blood from a bacteremic vertebrate reservoir host (e.g., white-tailed deer
[shaded]) become infected and maintain ehrlichiae to the nymphal stage. Infected nymphs may transmit E. chaffeensis to susceptible reservoir hosts
(unshaded) or to humans during acquisition of blood. Infected adult ticks, having acquired ehrlichiae either by transstadial transmission from
infected nymphal stage or during blood meal acquisition as noninfected nymphs on infected deer, may also pass E. chaffeensis to humans or other
susceptible reservoirs. Transovarial transmission has not been demonstrated, and eggs and unfed larvae are presumably not infected.
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(231), making them a potentially important reservoir for E.
chaffeensis. Antibody reactive with E. chaffeensis was identified
in 82 (20%) of 411 raccoons sampled from eight states (65). A
high prevalence of antibodies (20%) was also found among
raccoons sampled from an E. chaffeensis-enzootic site in Geor-
gia (170), but until additional evidence becomes available, the
role of this carnivore in the maintenance of E. chaffeensis is
uncertain.

The Virginia opossum (Didelphis virginianus) can serve as a
host for nymphal A. americanum (33) and is a common animal
throughout its range in North America (113). Antibodies re-
active with E. chaffeensis were identified among 3 (8%) of 38
opossums sampled at an E. chaffeensis-enzootic site (168). As
with several other wildlife species, additional evidence will
have to be established before the role, if any, for this marsupial
in the natural history of E. chaffeensis can be determined.

The contribution of rodents to the ecology of E. chaffeensis
is inconclusive, although larval and nymphal A. americanum
ticks parasitize several species of rodents (123). Antibodies
reactive with E. chaffeensis at titers of �80 were identified in 31
(10.6%) of 294 white-footed mice sampled from Connecticut
(175); however, there were no molecular or isolation data to
identify the causative agent. No antibodies reactive with E.
chaffeensis were identified among 281 rodents of eight species
sampled from the southern United States, including animals
obtained from E. chaffeensis-enzootic sites (168).

The role of birds as a natural reservoir for E. chaffeensis has
yet to be investigated, although many ground-feeding species
can serve as important sources of blood for immature stages of
A. americanum (123). The lone star tick is commonly found on
wild turkeys (Meleagris gallopavo), and this species has been
called the “turkey tick” because of this close association (82).
The remarkable recovery of the wild turkey in the northeastern
United States from its near extirpation in the 1800s may be
contributing to increases in the range and abundance of A.
americanum (189). Other ehrlichiae, including an organism
identified as E. chaffeensis, have been identified by PCR from
I. ricinus ticks recovered from several species of migratory
passerine birds in Russia. Ehrlichiae were identified from
cofeeding larvae and nymphs on the same bird, suggesting that
transmission of bacteria among ticks could occur without sys-
temic infection of the host (4).

Factors Influencing the Emergence of HME

As with most emerging infections, the boundary between
contemporary recognition and true biological emergence is

difficult to discern for HME. As of 2002, many questions re-
lating to the epidemiology and natural history, and pathogen-
esis of disease caused by E. chaffeensis, remain to be answered.
However, as detailed below, it appears likely that fundamental
changes in the host-vector ecology are largely responsible for
the emergence of this disease in human populations (Table 4).

Recent clinical recognition or new disease? In 1986, routine
perusal of a peripheral blood smear by a relatively inexperi-
enced observer precipitated the chain of events that led to the
first identification of HME (104). In retrospect, it is likely that
the same hematologic abnormalities had repeatedly gone un-
noticed or unappreciated prior to the identification of E.
chaffeensis as the cause of HME. Given the ubiquity of periph-
eral blood smear evaluation prior to widespread use of auto-
mated cytometry, it can be reasonably assumed that morulae
had been noted but the connection to an ehrlichiae was missed
or left uninvestigated. Even 15 years after the first documen-
tation of HME, experienced hematologists may have trouble
differentiating the morulae caused by E. chaffeensis from other
intracytoplasmic inclusions associated with conditions other
than ehrlichiosis. Without an index case to focus diagnostic
suspicion, it is likely that these inclusions would have been
attributed to other causes or noted but not considered relevant
to the disease process.

There are tantalizing hints that investigators had suspected
or linked ehrlichiae to individual cases of disease and even to
an outbreaks of disease decades earlier than its formal recog-
nition. An Ehrlichia sp. may have been identified in the bone
marrow of an immunodeficient persons as early as 1972 (C. A.
Kallick, S. Levin, and K. T. Reddi, Prog. Abstr. 13th Intersci.
Conf. Antimicrob. Agents Chemother., abstr. 1, 1973). A mys-
terious infectious disease affecting approximately 1,000 troops
training at Camp Bullis, Tex. during 1942 to 1943 was linked to
exposure to lone star ticks (283). The unexplained disease
shared sufficient epidemiologic and clinical features with HME
to suggest to contemporary scientists that an Ehrlichia sp. may
have been responsible (116, 117).

Evidence for recent emergence. Regardless of speculations
concerning the earliest appearance of HME, it is most likely
that recognition of this disease is attributable to identifiable,
and in some cases quantified, changes in biological, demo-
graphic, and environmental factors over the past several de-
cades. The interaction of these factors has not produced a new
pathogen or disease; rather, they have acted to increase the
incidence of HME to a level at which recognition became
probable. Another example of a tick-borne disease with dra-
matically changed incidence in the United States within the

TABLE 4. Examples of factors in the emergence of E. chaffeensis ehrlichiosis

Factor in emergence Authority or example

Increase in A. americanum population density........................................................................................................................................ 115
Increase in A. americanum geographic distribution................................................................................................................................ 146, 189
Increase in vertebrate host populations (wild turkeys, white-tailed deer) for A. americanum ......................................................... 184, 189
Increase in reservoir host (i.e., white-tailed deer) populations for E. chaffeensis............................................................................... 184
Increased human contact with natural foci of infection through recreational and occupational activities..................................... 209, 254
Increased frequency or severity of disease in aging or immunocompromised populations .............................................................. 105, 208
Increasing size and longevity of population �60 years of age and immunocompromised populations in region

of enzootic infection .............................................................................................................................................................................. 53, 210, 238, 267
Availability of diagnostic reagents and improved surveillance and reporting ..................................................................................... 73, 188
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past two decades is Lyme disease (153), which is an environ-
mentally driven zoonosis that shares many ecologic features
with HME and especially HGE (6). In these instances, changes
in wildlife and tick vector populations have been identified as
major factors in disease emergence (68).

Growth and geographic expansion of reservoir and vector
populations. It appears likely that the greatest influence on the
emergence of HME has been the explosive growth of white-
tailed deer populations in the United States. The white-tailed
deer is a major, and perhaps the keystone, vertebrate reservoir
for E. chaffeensis and serves as a primary source of blood for A.
americanum ticks of all life stages. Estimated numbers of
white-tailed deer document an approximately 50-fold increase
during the 20th century from an estimated 350,000 animals in
1900 to at least 17 million animals by the mid-1990s (184). In
many south central and southeastern states during 1973
through 1993, populations swelled three- to sevenfold (Fig. 7).
This remarkable increase in numbers has been matched by an
equally impressive range expansion throughout most suitable
habitat types in the eastern, central, and southern United
States. In recent decades, lone star ticks have become more
abundant in some areas of the southeast and northeast com-
pared to historic collections (102, 115). Higher population
densities of A. americanum observed within the expanding
range of this tick appear to be influenced largely by population
growth and geographical extension of host animals, particu-
larly white-tailed deer (196).

Other important vertebrate hosts for A. americanum have
undergone similarly impressive increases in abundance and
geographic distribution. Wild-turkey populations have in-
creased throughout their historic geographic range, and their
success has been shared by the lone star ticks. Concurrent
range expansion and increases in turkey and tick populations

have been reported at the extremes of known distribution of
lone star ticks, as in New York to the north (189) and Kansas
to the west (190). Coyotes, which serve as hosts to lone star
ticks and as potential reservoirs for E. chaffeensis (34, 150),
have become established throughout the eastern and southern
United States since the 1960s (130, 191). During the last sev-
eral decades, coyote populations have surged dramatically in
some regions of the southeastern United States (191).

Improved diagnostics and surveillance. The availability of
diagnostic reagents, changes in surveillance activities, and re-
quirements for national notification will obviously have a ma-
jor impact on our understanding of the epidemiology of HME.
However, reporting remains inconsistent or nonexistent in sev-
eral southern states, where HME is a special concern. It is
anticipated that further recognition of HME in the southeast-
ern United States will lead to increases in case reporting over
the next few years. Enhanced surveillance and education pro-
grams are required to raise the level of diagnostic suspicion for
HME as the full spectrum of disease is incompletely known. As
an example, tick-borne pathogens have been identified as im-
portant causes of nonspecific febrile illness in Wisconsin (31),
and similar efforts in southern locales will undoubtedly lead to
a better appreciation of the public health impact of HME.

Growth of susceptible human populations. One of the fun-
damental factors contributing to the emergence of new patho-
gens and diseases has been changes in host susceptibility, op-
erating through the mechanism of immunosupression,
affecting large segments of the population through aging, ma-
lignancy, or infectious causes (153, 193). The demographics of
the United States indicate an aging population, and HME is a
disease that occurs predominantly adults. The U.S. Census
Bureau estimates that the percentage of the population �45

FIG. 7. The white-tailed deer harvest in selected states in which E. chaffeensis is endemic mirrors a dramatic increase in population numbers.
Deer were virtually eliminated from many of these states in the early 1900s. Data from reference 234 and from Brian Murphy, Quality Deer
Management Association (personal communication).
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years of age will increase from 34.9% in 2000 to 41.3% in 2025
(254, 269).

Although the absolute prevalence of HIV among persons in
nonmetropolitan areas remains significantly lower than in ur-
ban centers, the number of HIV-infected persons residing in
nonmetropolitan areas has increased rapidly during the last 15
years (114). The diffusion of HIV into rural populations is
particularly evident in the southeastern United States (63, 238,
270) where the risk for acquiring HME is greatest (188). Com-
bination antiretroviral regimens have significantly slowed the
progression of HIV disease in many persons, with concomitant
declines in hospitalization rates, morbidity, and mortality in
patients for whom these drugs are available (210). In this
context, new therapies for HIV offer a level of health that
facilitates occupational and recreational pursuits that perhaps
were not previously possible. Some of these activities, includ-
ing hunting, hiking, camping, and working outdoors, have been
associated with acquisition of tick-borne diseases, including
HME (206). The emergence of a healthier HIV-infected pa-
tient population exposed to increasingly diverse environments
may paradoxically accentuate rises in the incidences of some
vector-borne or zoonotic diseases.

CONCLUSION

Seventeen years have elapsed since the first described pa-
tient with HME presented to medical attention. During this
interval, much has been learned about the pathogen, the dis-
ease, and the multiple ecological elements involved in the
maintenance of this zoonosis. However, as is true of all emerg-
ing pathogens, many questions remain. Among the numerous
areas for future research include studies that provide a better
understanding of the interactions between the pathogen and
the vector, that define pathogenic mechanisms involved in the
maintenance of E. chaffeensis in vertebrate reservoirs and fac-
tors influencing disease and immunity in human hosts, and that
estimate the incidence of disease in areas where E. chaffeensis
is endemic. Certainly, there are few, if any, areas relating to
this fascinating pathogen that have been completely eluci-
dated.
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